Self-powered nanowire devices.

نویسندگان

  • Sheng Xu
  • Yong Qin
  • Chen Xu
  • Yaguang Wei
  • Rusen Yang
  • Zhong Lin Wang
چکیده

The harvesting of mechanical energy from ambient sources could power electrical devices without the need for batteries. However, although the efficiency and durability of harvesting materials such as piezoelectric nanowires have steadily improved, the voltage and power produced by a single nanowire are insufficient for real devices. The integration of large numbers of nanowire energy harvesters into a single power source is therefore necessary, requiring alignment of the nanowires as well as synchronization of their charging and discharging processes. Here, we demonstrate the vertical and lateral integration of ZnO nanowires into arrays that are capable of producing sufficient power to operate real devices. A lateral integration of 700 rows of ZnO nanowires produces a peak voltage of 1.26 V at a low strain of 0.19%, which is potentially sufficient to recharge an AA battery. In a separate device, a vertical integration of three layers of ZnO nanowire arrays produces a peak power density of 2.7 mW cm(-3). We use the vertically integrated nanogenerator to power a nanowire pH sensor and a nanowire UV sensor, thus demonstrating a self-powered system composed entirely of nanowires.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting

A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasibl...

متن کامل

Superenhancers: Novel opportunities for nanowire optoelectronics

Nanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practi...

متن کامل

Flexible high-output nanogenerator based on lateral ZnO nanowire array.

We report here a simple and effective approach, named scalable sweeping-printing-method, for fabricating flexible high-output nanogenerator (HONG) that can effectively harvesting mechanical energy for driving a small commercial electronic component. The technique consists of two main steps. In the first step, the vertically aligned ZnO nanowires (NWs) are transferred to a receiving substrate to...

متن کامل

Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices{

This review focuses on the growth, properties and novel applications of aligned arrays of ZnO nanowires (NWs) and nanobelts (NBs) for nanogenerators and nano-piezotronics. Owing to the semiconducting and piezoelectric dual properties of ZnO crystals, novel applications are introduced using aligned ZnO NWs, such as nanogenerators. These unique properties and applications will have profound impac...

متن کامل

Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device.

Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piez...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 2010